K-N (Potassium-Nitrogen)

James Sangster

Equilibrium Diagram

The solubility of N in K was reviewed by [2000Bor] and [2001Bor]. Although there are no reported experimental data, a lower detection limit of 10×10^{-7} atom fraction was suggested [2000Bor]. There are two compounds, K₃N (potassium nitride) and KN₃ (potassium azide).

 K_3N is formed by direct reaction of the elements, but only if N_2 is subject to silent electrical discharge at low pressure [1930Wat]. It is also formed in the decomposition of KN_3 [1930Wat] or of KNH_2 [1954Eph]. It decomposes before melting [1930Wat]; its crystal structure has not been elucidated. K_3N was estimated to be about 93% ionic [1990Sha].

 KN_3 is most commonly prepared in aqueous solution, using reagents NaN₃, KOH, K₃PO4, HN₃, and K₂CO₃ [1898Cur, 1939Bro, 1967Sha, 1974Sne, 1986Bla]. It may also be prepared by the reaction $KNH_2 + N_2O$ (or KNO_3) [1954Eph].

 KN_3 has been characterized by XRD [1925Hen, 1936Fre, 1957Eva, 1966Par, 1972Mul] and neutron diffraction [1976Cho]. Its melting point has been reported as 343 °C [1926Suh], 345 °C [1975Win], or 350 °C [1916Tie]. Unlike RbN₃ and CsN₃, KN₃ undergoes no high-temperature transition [1965Mul, 1978Car]. It decomposes in the range 320-360 °C [1926Suh, 1993Bel].

Crystal Structures and Lattice Parameters

Crystal structures and lattice parameters are summarized in Tables 1 and 2. There is no information on the crystal structure of K_3N .

KN₃ has a layered structure, with alternating planes of N₃⁻ and K⁺ ions [1972Mul]. The N₃ group is linear and symmetrical [1936Fre]. Each N₃ group is equidistant from eight K atoms and vice versa [1925Hen]. KN₃, RbN₃, and CsN₃ are isostructural with the corresponding cyanates [1959Eva, 1959Wad, 1963Gra]. The arrangement resembles cubic CsCl, the N₃⁻ ions taking the place of Cl⁻. The thermal expansion of KN₃ was measured by [1966Par] in the range 20-340 °C by high-temperature XRD. The smoothed linear temperature dependences of the lattice parameters, as reported by [1966Par], are $da/dT = 2.6 \times 10^{-5}$ nm/K and $dc/dT = 6.7 \times 10^{-5}$ nm/K.

Thermodynamics

The standard thermodynamic formation quantities for KN_3 were determined by solution calorimetry as $\Delta_{\rm f}$ $H^\circ_{298} = -1.4$ kJ/mol KN₃ [1956Gra1] and $S^\circ_{298} = 86.0$ J/mol \cdot K [1956Gra1]. The derived lattice energy is 657 kJ/mol [1956Gra2].

The enthalpy of formation of K_3N was estimated (from the Born-Haber cycle) to be 84 kJ/mol [1966Moo].

References

- **1898Cur:** T. Curtius and J. Rissom, On HN₃, *J. Prakt. Chem.*, Vol 68 (No. 7-8), 1898, p 261-309 (in German). (Equi Diagram; Experimental)
- **1916Tie:** E. Tiede, The Decomposition of Alkali- and Alkaline Earth Metal Azides in High Vacuum for the Preparation of Pure Nitrogen, *Ber. Deut. Chem. Gesell.*, Vol 49, 1916, p 1742-1745 (in German). (Equi Diagram; Experimental)
- **1925Hen:** S.B. Hendricks and L. Pauling, The Crystal Structures of NaN₃, KN₃ and KCNO and the Nature of the N₃ Group, *J. Am. Chem. Soc.*, Vol 47 (No. 12), 1925, p 2904-2920. (Crys Structure; Experimental)
- **1926Suh:** R. Suhrmann and K. Clusius, The Preparation of Pure Alkali Metals, Z. Anorg. Allg. Chem., Vol 152 (No. 1), 1926, p 52-58 (in German). (Equi Diagram; Experimental)
- **1930Wat:** H. Wattenberg, Two Methods of Preparing Na₃N and K₃N, *Ber. Deut. Chem. Gesell.*, Vol 63, 1930, p 1667-1672 (in German). (Equi Diagram; Experimental)
- **1936Fre:** L.K. Frevel, The Configuration of the Azide Ion, *J. Am. Chem. Soc.*, Vol 58 (No. 5), 1936, p 779-782. (Crys Structure; Experimental)
- **1939Bro:** A.W. Browne, Potassium Azide, *Inorganic Syntheses*, H.S. Booth, Ed., McGraw-Hill, 1939, p 79-81. (Equi Diagram; Review)
- **1954Eph:** F. Ephraim, *Inorganic Chemistry*, 6th ed., P.C.L. Thorne and E.R. Roberts, Ed., Interscience, 1954. (Equi Diagram; Review)
- **1956Gra1:** P. Gray and T.C. Waddington, Thermochemistry and Reactivity of the Azides: I. Thermochemistry of the Inorganic Azides, *Proc. R. Soc. A*, Vol 235, 1956, p 106-119. (Thermo; Experimental)
- **1956Gra2:** P. Gray and T.C. Waddington, Thermochemistry of the Azides: II. Lattice Energies of Ionic Azides, Electron Affinity and Heat of Formation of the Azide Radical and Related Properties, *Proc. R. Soc. A*, Vol 345, 1956, p 481-495. (Thermo; Experimental)
- 1957Eva: B.L. Evans and A.D. Yoffe, Structure and Stability of

 Table 1
 K-N crystal structure data

Phase	Composition, at.% N	Pearson symbol	Space group	Strukturbericht designation	Prototype	Reference
K	0	cI2	Im3m	A2	W	[King1]

Phase	Composition, at.% N	Lattice par	ameters, nm	Temperature, °C	Reference
		a	с		
К	0	0.5321		25	[King1]
KN3	75.0	0.6085	0.6997	-196	[1976Cho]
		0.6106	0.7070	20	[1925Hen]
		0.61131	0.70814	20	[1966Par](a)
		0.61129	0.70943	21	[1972Mul]
		0.61205	0.70748	36.5	[1966Par]
		0.61307	0.71082	75	[1966Par]
		0.61424	0.71302	120	[1966Par]
		0.61491	0.71253	144.5	[1966Par]
		0.61557	0.71708	170	[1966Par]
		0.61606	0.71953	195	[1966Par]
		0.61590	0.72072	200	[1966Par]
		0.61669	0.72016	220	[1966Par]
		0.61742	0.72463	246	[1966Par]
		0.61783	0.72444	280	[1966Par]
		0.61841	0.72470	308	[1966Par]
		0.61960	0.72707	327	[1966Par]
		0.62067	0.72865	340	[1966Par]
(a) The lattice	parameter values of [1966Par]	reported here are, at each t	emperature, the mean of the	e results for Cu and Mo radiation	n.

Table 2 K-N lattice parameter data

Inorganic Azides. *Proc. R. Soc. A*, Vol 238, 1957, p 568-574. (Crys Structure; Experimental)

- **1959Eva:** B.L. Evans, A.D. Yoffe, and P. Gray, Physics and Chemistry of the Inorganic Azides, *Chem. Rev.*, Vol 59 (No. 4), 1959, p 515-568. (Equi Diagram, Crys Structure, Thermo; Review)
- **1959Wad:** T.C. Waddington, Lattice Parameters and Infrared Spectra of Some Inorganic Cyanates, *J. Chem. Soc.*, (No. 3), 1959, p 2499-2502. (Crys Structure; Experimental)
- 1963Gra: P. Gray, Chemistry of the Inorganic Azides, *Quart. Rev.*, Vol 17 (No. 4), 1963, p 441-473. (Crys Structure; Review)
- **1965Mul:** H.J. Müller and J.A. Jöbstl, High-Temperature Modifications of Alkali Azides, Z. *Kristallogr.*, Vol 121 (No. 5), 1965, p 385-391 (in German). (Crys Structure; Experimental)
- **1966Moo:** G.J. Moody and J.D.R. Thomas, Alkali Metal Nitrides, *J. Chem. Edu.*, Vol 43 (No. 4), 1966, p 205-206. (Thermo; Theory)
- **1966Par:** R.B. Parsons and A.D. Yoffe, Thermal Expansion of the Alkali Metal Azides, *Acta Crystallogr.*, Vol 20, 1966, p 36-42. (Crys Structure; Experimental)
- **1967Sha:** R. Shaw and J.K. Wood, "KN₃," Canadian Patent No. 752,779, 1967. (Equi Diagram; Experimental)
- **1972Mul:** U. Müller, Crystal Structure Refinements of KN₃, RbN₃, CsN₃ and TlN₃, *Z. Anorg. Allg. Chem.*, Vol 392 (No. 2), 1972, p 159-166 (in German). (Crys Structure; Experimental)
- 1974Sne: W. Snead and R.E. McGreevy, "Potassium Azide," Canadian Patent No. 945,737, 1974. (Equi Diagram; Experimental)
- **1975Win:** H.G. Winkler, H.T. Spath, and K. Torkar, The Melting Diagrams of the Systems CsN₃-Zn(N₃)₂ and KN₃-Zn(N₃)₂,

Monatsh. Chem., Vol 106 (No. 2), 1975, p 535-545 (in German). (Equi Diagram; Experimental)

- **1976Cho:** C.S. Choi and E. Prince, A Neutron Diffraction Study of Structure and Thermal Motion in Several Monovalent Azides, *J. Chem. Phys.*, Vol 64 (No. 11), 1976, p 4510-4516. (Crys Structure; Experimental)
- **1978Car:** R.W. Carling and E.F. Westrum, Thermophysics of Alkali and Related Azides: II. Heat Capacities of KNH₂, RbN₃, CsN₃ and TlN₃ at 5-350 K, *J. Chem. Thermodyn.*, Vol 10 (No. 12), 1978, p 1181-1200. (Thermo; Experimental)
- **1986Bla:** F. Blatter and E. Schumacher, Production of High-Purity Cs, *J. Less-Common Met.*, Vol 115 (No. 2), 1986, p 307-313. (Thermo; Experimental)
- 1990Sha: S.B. Sharma, P. Paliwal, and M. Kumar, Electronic Dielectric Constant, Energy Gap and Fractional Ionic Character of Polyatomic Binary Compounds, *J. Phys. Chem. Solids*, Vol 51 (No. 1), 1990, p 35-39. (Equi Diagram; Experimental)
- **1993Bel:** V.N. Belomestnykh, Acoustic Studies of Polymorphic Transitions in Inorganic Azides, *Izv. Akad. Nauk SSSR, Neog. Mater.*, Vol 29 (No. 2), 1993, p 221-226 (in Russian); TR, *Inorg. Mater.*, Vol 29 (No. 2), 1993, p 217-223. (Equi Diagram, Crys Structure; Review)
- 2000Bor: H.U. Borgstedt and C. Guminski, Solubilities and Solution Chemistry in Liquid Alkali Metals, *Monatsh. Chem.*, Vol 131 (No. 9), 2000, p 917-930. (Equi Diagram; Review)
- 2001Bor: H.U. Borgstedt and C. Guminski, IUPAC-NIST Solubility Data Series 75, Nonmetals in Liquid Alkali Metals, *J. Phys. Chem. Ref. Data*, Vol 30 (No. 4), 2001, p 835-1158. (Equi Diagram; Review)

K-N evaluation contributed by **J. Sangster**, Sangster Research Laboratories, P.O. Box 49562, 5122 Cotes des Neiges, Montreal, Quebec, Canada, H3T 2A5. Literature searched through 2004.